pw.xpacks.llm.prompts

class pw.xpacks.llm.prompts.BasePromptTemplate(**data)

[source]

copy(*, include=None, exclude=None, update=None, deep=False)

sourceReturns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

\python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) ``

  • Parameters
    • include – Optional set or mapping specifying which fields to include in the copied model.
    • exclude – Optional set or mapping specifying which fields to exclude in the copied model.
    • update – Optional dictionary of field-value pairs to override field values in the copied model.
    • deep – If True, the values of fields that are Pydantic models will be deep-copied.
  • Returns
    A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(**values)

sourceCreates a new instance of the Model class with validated data.

Creates a new model setting dict and pydantic_fields_set from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__
and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in
an error if extra values are passed, but they will be ignored.
  • Parameters
    • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
    • values (Any) – Trusted or pre-validated data dictionary.
  • Returns
    A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

  • Parameters
    • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
    • deep (bool) – Set to True to make a deep copy of the model.
  • Returns
    New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

  • Parameters
    • mode (Union[Literal['json', 'python'], str]) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to include in the output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to exclude from the output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to use the field’s alias in the dictionary key if defined.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

  • Parameters
    • indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to include in the JSON output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to exclude from the JSON output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to serialize using field aliases.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A JSON string representation of the model.

property model_extra: dict[str, Any] | None

Get extra fields set during validation.

  • Returns
    A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

  • Returns
    A set of strings representing the fields that have been set,
      i.e. that were not filled from defaults.
    

classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')

sourceGenerates a JSON schema for a model class.

  • Parameters
    • by_alias (bool) – Whether to use attribute aliases or not.
    • ref_template (str) – The reference template.
    • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
    • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
  • Returns
    The JSON schema for the given model class.

classmethod model_parametrized_name(params)

sourceCompute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

  • Parameters
    params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
  • Returns
    String representing the new class where params are passed to cls as type variables.
  • Raises
    TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init()

sourceOverride this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force=False, raise_errors=True, )

sourceTry to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

  • Parameters
    • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
    • raise_errors (bool) – Whether to raise errors, defaults to True.
    • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
    • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.
  • Returns
    Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)

sourceValidate a pydantic model instance.

  • Parameters
    • obj (Any) – The object to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • from_attributes (bool | None) – Whether to extract data from object attributes.
    • context (Any | None) – Additional context to pass to the validator.
  • Raises
    ValidationError – If the object could not be validated.
  • Returns
    The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

  • Parameters
    • json_data (str | bytes | bytearray) – The JSON data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.
  • Raises
    ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)

sourceValidate the given object with string data against the Pydantic model.

  • Parameters
    • obj (Any) – The object containing string data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.

class pw.xpacks.llm.prompts.FunctionPromptTemplate(**data)

[source]

Utility class to create prompt templates from callables or UDF.

as_udf may take kwargs to partially pre-fill the prompt template.

copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False)Self

sourceReturns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

\python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) ``

  • Parameters
    • include – Optional set or mapping specifying which fields to include in the copied model.
    • exclude – Optional set or mapping specifying which fields to exclude in the copied model.
    • update – Optional dictionary of field-value pairs to override field values in the copied model.
    • deep – If True, the values of fields that are Pydantic models will be deep-copied.
  • Returns
    A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(**values)

sourceCreates a new instance of the Model class with validated data.

Creates a new model setting dict and pydantic_fields_set from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__
and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in
an error if extra values are passed, but they will be ignored.
  • Parameters
    • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
    • values (Any) – Trusted or pre-validated data dictionary.
  • Returns
    A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

  • Parameters
    • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
    • deep (bool) – Set to True to make a deep copy of the model.
  • Returns
    New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

  • Parameters
    • mode (Union[Literal['json', 'python'], str]) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to include in the output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to exclude from the output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to use the field’s alias in the dictionary key if defined.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

  • Parameters
    • indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to include in the JSON output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to exclude from the JSON output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to serialize using field aliases.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A JSON string representation of the model.

property model_extra: dict[str, Any] | None

Get extra fields set during validation.

  • Returns
    A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

  • Returns
    A set of strings representing the fields that have been set,
      i.e. that were not filled from defaults.
    

classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')

sourceGenerates a JSON schema for a model class.

  • Parameters
    • by_alias (bool) – Whether to use attribute aliases or not.
    • ref_template (str) – The reference template.
    • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
    • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
  • Returns
    The JSON schema for the given model class.

classmethod model_parametrized_name(params)

sourceCompute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

  • Parameters
    params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
  • Returns
    String representing the new class where params are passed to cls as type variables.
  • Raises
    TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init()

sourceOverride this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force=False, raise_errors=True, )

sourceTry to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

  • Parameters
    • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
    • raise_errors (bool) – Whether to raise errors, defaults to True.
    • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
    • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.
  • Returns
    Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)

sourceValidate a pydantic model instance.

  • Parameters
    • obj (Any) – The object to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • from_attributes (bool | None) – Whether to extract data from object attributes.
    • context (Any | None) – Additional context to pass to the validator.
  • Raises
    ValidationError – If the object could not be validated.
  • Returns
    The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

  • Parameters
    • json_data (str | bytes | bytearray) – The JSON data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.
  • Raises
    ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)

sourceValidate the given object with string data against the Pydantic model.

  • Parameters
    • obj (Any) – The object containing string data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.

class pw.xpacks.llm.prompts.RAGFunctionPromptTemplate(**data)

[source]

copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False)Self

sourceReturns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

\python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) ``

  • Parameters
    • include – Optional set or mapping specifying which fields to include in the copied model.
    • exclude – Optional set or mapping specifying which fields to exclude in the copied model.
    • update – Optional dictionary of field-value pairs to override field values in the copied model.
    • deep – If True, the values of fields that are Pydantic models will be deep-copied.
  • Returns
    A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(**values)

sourceCreates a new instance of the Model class with validated data.

Creates a new model setting dict and pydantic_fields_set from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__
and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in
an error if extra values are passed, but they will be ignored.
  • Parameters
    • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
    • values (Any) – Trusted or pre-validated data dictionary.
  • Returns
    A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

  • Parameters
    • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
    • deep (bool) – Set to True to make a deep copy of the model.
  • Returns
    New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

  • Parameters
    • mode (Union[Literal['json', 'python'], str]) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to include in the output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to exclude from the output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to use the field’s alias in the dictionary key if defined.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

  • Parameters
    • indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to include in the JSON output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to exclude from the JSON output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to serialize using field aliases.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A JSON string representation of the model.

property model_extra: dict[str, Any] | None

Get extra fields set during validation.

  • Returns
    A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

  • Returns
    A set of strings representing the fields that have been set,
      i.e. that were not filled from defaults.
    

classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')

sourceGenerates a JSON schema for a model class.

  • Parameters
    • by_alias (bool) – Whether to use attribute aliases or not.
    • ref_template (str) – The reference template.
    • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
    • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
  • Returns
    The JSON schema for the given model class.

classmethod model_parametrized_name(params)

sourceCompute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

  • Parameters
    params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
  • Returns
    String representing the new class where params are passed to cls as type variables.
  • Raises
    TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init()

sourceOverride this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force=False, raise_errors=True, )

sourceTry to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

  • Parameters
    • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
    • raise_errors (bool) – Whether to raise errors, defaults to True.
    • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
    • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.
  • Returns
    Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)

sourceValidate a pydantic model instance.

  • Parameters
    • obj (Any) – The object to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • from_attributes (bool | None) – Whether to extract data from object attributes.
    • context (Any | None) – Additional context to pass to the validator.
  • Raises
    ValidationError – If the object could not be validated.
  • Returns
    The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

  • Parameters
    • json_data (str | bytes | bytearray) – The JSON data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.
  • Raises
    ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)

sourceValidate the given object with string data against the Pydantic model.

  • Parameters
    • obj (Any) – The object containing string data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.

class pw.xpacks.llm.prompts.RAGPromptTemplate(**data)

[source]

copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False)Self

sourceReturns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

\python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) ``

  • Parameters
    • include – Optional set or mapping specifying which fields to include in the copied model.
    • exclude – Optional set or mapping specifying which fields to exclude in the copied model.
    • update – Optional dictionary of field-value pairs to override field values in the copied model.
    • deep – If True, the values of fields that are Pydantic models will be deep-copied.
  • Returns
    A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(**values)

sourceCreates a new instance of the Model class with validated data.

Creates a new model setting dict and pydantic_fields_set from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__
and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in
an error if extra values are passed, but they will be ignored.
  • Parameters
    • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
    • values (Any) – Trusted or pre-validated data dictionary.
  • Returns
    A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

  • Parameters
    • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
    • deep (bool) – Set to True to make a deep copy of the model.
  • Returns
    New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

  • Parameters
    • mode (Union[Literal['json', 'python'], str]) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to include in the output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to exclude from the output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to use the field’s alias in the dictionary key if defined.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

  • Parameters
    • indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to include in the JSON output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to exclude from the JSON output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to serialize using field aliases.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A JSON string representation of the model.

property model_extra: dict[str, Any] | None

Get extra fields set during validation.

  • Returns
    A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

  • Returns
    A set of strings representing the fields that have been set,
      i.e. that were not filled from defaults.
    

classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')

sourceGenerates a JSON schema for a model class.

  • Parameters
    • by_alias (bool) – Whether to use attribute aliases or not.
    • ref_template (str) – The reference template.
    • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
    • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
  • Returns
    The JSON schema for the given model class.

classmethod model_parametrized_name(params)

sourceCompute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

  • Parameters
    params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
  • Returns
    String representing the new class where params are passed to cls as type variables.
  • Raises
    TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init()

sourceOverride this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force=False, raise_errors=True, )

sourceTry to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

  • Parameters
    • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
    • raise_errors (bool) – Whether to raise errors, defaults to True.
    • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
    • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.
  • Returns
    Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)

sourceValidate a pydantic model instance.

  • Parameters
    • obj (Any) – The object to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • from_attributes (bool | None) – Whether to extract data from object attributes.
    • context (Any | None) – Additional context to pass to the validator.
  • Raises
    ValidationError – If the object could not be validated.
  • Returns
    The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

  • Parameters
    • json_data (str | bytes | bytearray) – The JSON data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.
  • Raises
    ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)

sourceValidate the given object with string data against the Pydantic model.

  • Parameters
    • obj (Any) – The object containing string data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.

class pw.xpacks.llm.prompts.StringPromptTemplate(**data)

[source]

Utility class to create prompt templates that can be applied to tables.

import pandas as pd
import pathway as pw
prompt_template = "Answer the following question. Context: {context}. Question: {query}"
t = pw.debug.table_from_pandas(pd.DataFrame([{"context": "Here are some facts...",
    "query": "How much do penguins weigh in average?"}]))
template = StringPromptTemplate(template=prompt_template)
template_udf = template.as_udf()
t = t.select(prompt=template_udf(context=pw.this.context, query=pw.this.query))

copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False)Self

sourceReturns a copy of the model.

!!! warning “Deprecated”

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

\python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) ``

  • Parameters
    • include – Optional set or mapping specifying which fields to include in the copied model.
    • exclude – Optional set or mapping specifying which fields to exclude in the copied model.
    • update – Optional dictionary of field-value pairs to override field values in the copied model.
    • deep – If True, the values of fields that are Pydantic models will be deep-copied.
  • Returns
    A copy of the model with included, excluded and updated fields as specified.

model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

classmethod model_construct(**values)

sourceCreates a new instance of the Model class with validated data.

Creates a new model setting dict and pydantic_fields_set from trusted or pre-validated data. Default values are respected, but no other validation is performed.

!!! note

model_construct() generally respects the model_config.extra setting on the provided model.
That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__
and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored.
Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in
an error if extra values are passed, but they will be ignored.
  • Parameters
    • _fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
    • values (Any) – Trusted or pre-validated data dictionary.
  • Returns
    A new instance of the Model class with validated data.

model_copy(*, update=None, deep=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy

Returns a copy of the model.

  • Parameters
    • update (Optional[Mapping[str, Any]]) – Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
    • deep (bool) – Set to True to make a deep copy of the model.
  • Returns
    New model instance.

model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

  • Parameters
    • mode (Union[Literal['json', 'python'], str]) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to include in the output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – A set of fields to exclude from the output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to use the field’s alias in the dictionary key if defined.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A dictionary representation of the model.

model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

  • Parameters
    • indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
    • include (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to include in the JSON output.
    • exclude (Union[Set[int], Set[str], Mapping[int, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], Mapping[str, Union[Set[int], Set[str], Mapping[int, Union[IncEx, bool]], Mapping[str, Union[IncEx, bool]], bool]], None]) – Field(s) to exclude from the JSON output.
    • context (Any | None) – Additional context to pass to the serializer.
    • by_alias (bool) – Whether to serialize using field aliases.
    • exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
    • exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
    • exclude_none (bool) – Whether to exclude fields that have a value of None.
    • round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
    • warnings (Union[bool, Literal['none', 'warn', 'error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
    • serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
  • Returns
    A JSON string representation of the model.

property model_extra: dict[str, Any] | None

Get extra fields set during validation.

  • Returns
    A dictionary of extra fields, or None if config.extra is not set to “allow”.

property model_fields_set: set[str]

Returns the set of fields that have been explicitly set on this model instance.

  • Returns
    A set of strings representing the fields that have been set,
      i.e. that were not filled from defaults.
    

classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')

sourceGenerates a JSON schema for a model class.

  • Parameters
    • by_alias (bool) – Whether to use attribute aliases or not.
    • ref_template (str) – The reference template.
    • schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
    • mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
  • Returns
    The JSON schema for the given model class.

classmethod model_parametrized_name(params)

sourceCompute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

  • Parameters
    params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
  • Returns
    String representing the new class where params are passed to cls as type variables.
  • Raises
    TypeError – Raised when trying to generate concrete names for non-generic models.

model_post_init()

sourceOverride this method to perform additional initialization after init and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

classmethod model_rebuild(*, force=False, raise_errors=True, )

sourceTry to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

  • Parameters
    • force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
    • raise_errors (bool) – Whether to raise errors, defaults to True.
    • _parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
    • _types_namespace (Optional[Mapping[str, Any]]) – The types namespace, defaults to None.
  • Returns
    Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding was required, returns True if rebuilding was successful, otherwise False.

classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)

sourceValidate a pydantic model instance.

  • Parameters
    • obj (Any) – The object to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • from_attributes (bool | None) – Whether to extract data from object attributes.
    • context (Any | None) – Additional context to pass to the validator.
  • Raises
    ValidationError – If the object could not be validated.
  • Returns
    The validated model instance.

classmethod model_validate_json(json_data, *, strict=None, context=None)

sourceUsage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing

Validate the given JSON data against the Pydantic model.

  • Parameters
    • json_data (str | bytes | bytearray) – The JSON data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.
  • Raises
    ValidationError – If json_data is not a JSON string or the object could not be validated.

classmethod model_validate_strings(obj, *, strict=None, context=None)

sourceValidate the given object with string data against the Pydantic model.

  • Parameters
    • obj (Any) – The object containing string data to validate.
    • strict (bool | None) – Whether to enforce types strictly.
    • context (Any | None) – Extra variables to pass to the validator.
  • Returns
    The validated Pydantic model.

pw.xpacks.llm.prompts.prompt_short_qa(context, query, additional_rules='')

sourceGenerate a RAG prompt with given context.

Specifically for getting short and concise answers. Given a question, and list of context documents, generates prompt to be sent to the LLM. Suggests specific formatting for yes/no questions and dates.

  • Parameters
    • context (str) – Information sources or the documents to be passed to the LLM as context.
    • query (str) – Question or prompt to be answered.
    • additional_rules (str) – Optional parameter for rest of the string args that may include additional instructions or information.
  • Returns
    Prompt containing question and the relevant docs.

pw.xpacks.llm.prompts.prompt_qa(context, query, information_not_found_response='No information found.', additional_rules='')

sourceGenerate RAG prompt with given context.

Given a question and list of context documents, generates prompt to be sent to the LLM.

  • Parameters
    • context (str) – Information sources or the documents to be passed to the LLM as context.
    • query (str) – Question or prompt to be answered.
    • information_not_found_response – Response LLM should generate in case answer cannot be inferred from the given documents.
    • additional_rules (str) – Optional parameter for rest of the string args that may include additional instructions or information.
  • Returns
    Prompt containing question and relevant docs.
import pandas as pd
import pathway as pw
from pathway.xpacks.llm import prompts
t = pw.debug.table_from_pandas(pd.DataFrame([{"context": "Here are some facts...",
    "query": "How much do penguins weigh in average?"}]))
r = t.select(prompt=prompts.prompt_qa(pw.this.context, pw.this.query))

pw.xpacks.llm.prompts.prompt_summarize(text_list)

sourceGenerate a summarization prompt with the list of texts.

  • Parameters
    text_list (list[str]) – List of text documents.
  • Returns
    Summarized text.

pw.xpacks.llm.prompts.prompt_query_rewrite_hyde(query)

sourceGenerate prompt for query rewriting using the HyDE technique.

  • Parameters
    query (str) – Original search query or user prompt.
  • Returns
    Transformed query.

pw.xpacks.llm.prompts.prompt_query_rewrite(query, *additional_args)

sourceGenerate prompt for query rewriting.

Prompt function to generate and augment index search queries using important names, entities and information from the given input. Generates three transformed queries concatenated with comma to improve the search performance.

  • Parameters
    • query (str) – Original search query or user prompt.
    • additional_args (str) – Additional information that may help LLM in generating the query.
  • Returns
    Transformed query.